Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 1, 2026
-
The built environment requires extraction and consumption of enormous quantities of raw materials, water, and energy. While these materials remain in use for several years or decades, growing global populations and aging infrastructure are driving widespread generation of one of the largest and most challenging waste streams to manage. There is growing interest from communities in integrating circular economy (CE) strategies in the context of construction & demolition (C&D) material management. Many approaches for doing so focus on small-scale CE applications like individual products, materials, or projects. However, greater understanding is needed at the city-scale given communities’ complex position at the frontlines of local development, resource consumption, and waste management. This study summarizes the development of an evaluative framework for community-based C&D circularity at a city or regional level. The framework expands upon a mixed methods approach called the Circularity Assessment Protocol (CAP), which integrates aspects of urban metabolism, geospatial analysis, and qualitative research methods to examine plastic waste management in communities. To advance convergent CE research, here, we aim to adapt the CAP framework to C&D. We describe our adaptation of the CAP to C&D through a conceptual review describing research, methods, and strategies related to seven elements of a local CE context: C&D Analytics, Building Material and Design, Community, Use, Collection, End-of-Cycle, and C&D Emissions. This work describes a novel yet preliminary conceptualization for developing a baseline understanding of circular C&D material management and a holistic examination of barriers, affordances, and opportunities for improving city-wide circularity.more » « lessFree, publicly-accessible full text available December 31, 2025
-
One application of plastics that grew during the COVID-19 pandemic is for social distancing plastic shields, or protective barriers, made from polymethyl methacrylate (PMMA) such as transparent face guards. Although available for other applications, end-of-life impacts for barriers are currently lacking in the literature, and there is a need to fill in this gap to guide decisions. This study evaluated the end-of-life environmental impacts of PMMA barriers in the United States by using life cycle assessment. We evaluated five strategies including landfilling, waste-to-energy, mechanical recycling, chemical recycling and reuse. Data were sourced from literature and various life cycle inventory databases. The Tool for Reduction and Assessment of Chemicals and Other Environmental Impacts (TRACI) was used as the life cycle impact assessment method. Landfilling exhibited the highest impact in all indicators and reuse demonstrated optimal results for global warming potential. A scenario analysis was conducted to explore a combination of strategies, revealing that the most promising approach involved a mix of 40% reuse, 20% mechanical recycling and 40% chemical recycling. Circular economy recommendations are proposed for managing these sources of plastic waste in the United States.more » « less
-
Abstract The study compared the life cycle environmental impacts of three coastal flood management strategies: grey infrastructure (levee), green–grey infrastructure (levee and oyster reef), and a do-nothing scenario, considering the flood damage of a single flooding event in the absence of protection infrastructure. A case study was adopted from a New Orleans, Louisiana residential area to facilitate the comparison. Hazus software, design guidelines, reports, existing projects, and literature were utilized as foreground data for modelling materials. A process-based life cycle assessment was used to assess environmental impacts. The life cycle environmental impacts included global warming, ozone depletion, acidification, eutrophication, smog formation, resource depletion, ecotoxicity, and various human health effects. The ecoinvent database was used for the selected life cycle unit processes. The mean results show green–grey infrastructure as the most promising strategy across most impact categories, reducing 47% of the greenhouse gas (GHG) emissions compared to the do-nothing strategy. Compared to grey infrastructure, green–grey infrastructure mitigates 13%–15% of the environmental impacts while providing equivalent flood protection. A flooding event with a 100-year recurrence interval in the study area is estimated at 34 million kg of CO2equivalent per kilometre of shoreline, while grey and green–grey infrastructure mitigating such flooding is estimated to be 21 and 18 million kg, respectively. This study reinforced that coastal flooding environmental impacts are primarily caused by rebuilding damaged houses, especially concrete and structural timber replacement, accounting for 90% of GHG emissions, with only 10% associated with flood debris waste treatment. The asphalt cover of the levee was identified as the primary contributor to environmental impacts in grey infrastructure, accounting for over 75% of GHG emissions during construction. We found that there is an important interplay between grey and green infrastructure and optimizing their designs can offer solutions to sustainable coastal flood protection.more » « less
-
Amid the growth of circular economy research, policy, and practice, there are increasingly loud calls for a unified and singular definition of circularity. This unity is needed, proponents argue, to enable swift action in the face of climate and environmental crises. Our work interrogates the ideal of convergence around the circular economy. We ask whether circularity must be singular and uniform in order to be effective. Based on convergence science research and social theory rooted in ideas of divergence, our paper draws on observations of a convergence science workshop, focus groups, interviews, and questionnaires with US-based circular economy professionals to explore shared and divergent understandings and practices of circularity. We find that even among a relatively homogeneous group of research participants (in terms of race, class, and education), there is significant divergence in terms of both practices and perceptions of circular economy principles. We focus in this paper on how research participants understand innovation in the circular economy as just one potential illustration of divergent circularity. Our research contributes to an understanding of circular economy knowledge politics, illuminating how circularity is contested even among those who advocate most strongly for its implementation. We ultimately find opportunity and promise precisely in the spaces of contestation, and see divergence as a way to hold space for multiple ways of being and relating to economies, materials, and beings. These more inclusive pathways, we argue, may be necessary to ensure just and effective transitions to more circular economic forms.more » « less
An official website of the United States government
